Sharp Resolvent Estimates on Non-positively Curved Asymptotically Hyperbolic Manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Strichartz Estimates on Non-trapping Asymptotically Conic Manifolds

We obtain the Strichartz inequalities Lt Lx([0,1]×M) ≤ C‖u(0)‖L2(M) for any smooth n-dimensional Riemannian manifold M which is asymptotically conic at infinity (with either short-range or long-range metric perturbation) and non-trapping, where u is a solution to the Schrödinger equation iut + 1 2 ∆Mu = 0, and 2 < q, r ≤ ∞ are admissible Strichartz exponents ( 2 q + n r = n 2 ). This correspond...

متن کامل

Analytic Continuation and Semiclassical Resolvent Estimates on Asymptotically Hyperbolic Spaces

In this paper we construct a parametrix for the high-energy asymptotics of the analytic continuation of the resolvent on a Riemannian manifold which is a small perturbation of the Poincaré metric on hyperbolic space. As a result, we obtain non-trapping high energy estimates for this analytic continuation.

متن کامل

Positively Curved Combinatorial 3-Manifolds

We present two theorems in the “discrete differential geometry” of positively curved spaces. The first is a combinatorial analog of the Bonnet-Myers theorem: • A combinatorial 3-manifold whose edges have degree at most five has edgediameter at most five. When all edges have unit length, this degree bound is equivalent to an angle-deficit along each edge. It is for this reason we call such space...

متن کامل

Inverse Scattering on Asymptotically Hyperbolic Manifolds

Scattering is deened on compact manifolds with boundary which are equipped with an asymptotically hyperbolic metric, g: A model form is established for such metrics close to the boundary. It is shown that the scattering matrix at energy exists and is a pseudo-diierential operator of order 2 + 1 ? dim X: The symbol of the scattering matrix is then used to show that except for a discrete set of e...

متن کامل

Rigidity of Asymptotically Hyperbolic Manifolds

In this paper, we prove a rigidity theorem of asymptotically hyperbolic manifolds only under the assumptions on curvature. Its proof is based on analyzing asymptotic structures of such manifolds at infinity and a volume comparison theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2020

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnaa297